
^mUBi-MillM'1

i|«NM^^iiwii,mimiiiiH«i|imi tm IHIIHIU vm**m*mmmmiWimimG**'l^***^m'^^m*-

AD/A-005 826

A PHONOLOGICAL RULES SYSTEM

J. A, Barnett

System Development Corporation

r
Prepared for:

Advanced Research Projects Agency

24 January 1975

DISTRIBUTED BY:

KTDi
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

MMHMMM^^

mm in ummi^mmmmmi n I.MIIIIIII wm^mmmmm

UNCLASSIFIED

SECURITY CLASSIFICA'. ION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER 2. GOVT ACCESSION NO

4. TITLE fand Subilile)

A PHONOLOGICAL RULES SYSTEM

7. AUTHORf«;

Barnett, J. A.

*■ PERFORMING ORGANIZATION NAME AND ADDRESS

System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90406

II. CONTROLLING OFFICE NAME AND ADDRESS

14. MONITORING AGENCY NAME 4 ADDRESSf// dltlerenl /ram Controlling Olllce)

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

9 DI7Ar> IKICTDI
22A.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT 4 PERIOD COVERED

Technical - 1974

6. PERFORMING ORG. REPORT NUMBER

TM-5478/000/00
8. CONTRACT OR GRANT NUMBERfaJ

DAHC15-73-C-0080

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

Program Code 5D30
12 REPORT DATE

24 January 1975
13 NUMBER OF PAGES

50
IS. SECURITY CLASS. fo< thlm report)

Unclassified

15a. DECLAS ATION/DOWNGRADING
SCHEDl

16. DISTRIBUTION STATEMENT (ol thU Report)

Cleared for public release; distribution unlimited

17. DISTRIBUTION ST ATEMENT fo/the aba(rac(entered/n S/ock 20, II dlllerenl Irom Report)

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Daparlmenf of Commerce
Springfield, VA. 22151

S. SUPPLEMENTARY NOTES

19. KEY WORDS fContfnue on reverie tide II neceaeary «n«* ld»nllly by block number)

automatic speech processing
LISP extensions

20. ABSTRACT ('Continue on ravaraa tide II nacaaeary and Identity by block number)

f 0)
DO 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE » UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE fWian Data EnlaradJ

~ - I i^ilmiiiliiiMiilMilli li hi i U likiJB

'— " •'•• -»'»^^iPPPHPI^piPi^^www^^PMP^W mm**m

TM-5471/000/Ü0

A PHONOLOGICAL RULES SYSTEM

J. A. BARNEH

24 JANUARY 1975

THIS REPORT WAS PRODUCED BY SDC 1,4 PERFORMANCE OF CONTRACT
NO. DAHC15-73-C-0080, ARPA ORDER NO. 2254, PROGRAM CODE NO.
5030.

THE VIEWS AND CONCLUSIONS CONTAINED HEREIN ARE THOSE OF THE
AUTHOR AND SHOULD NOT BE INTERPRETED AS NECESSARILY REPRE-
SENTING THE OFFICIAL POLICIES EITHER EXPRESSED OR IMPLIED OF
THE ADVANCED RESEARCH PROJECTS AGENCY OR THE U.S. GOVERNMENT

•

iQy

System Development Corporation
iSOO Colorado Avenue ■ Santa Monica, California 30406

IM ■ — -. ^ . .^.^ -^^

Wim" i.f,im*pi m*m^*^**~*m
«VntaMu-.

<Lii,"ia"" ' ' mwmmmmmmmmmmmmmmmmm

24 January 1975 Systea Developaent Corporation
-1- vH-sme/Qoo/oo

lÄBLE_5f_£0MTiiJTS

■
■

1. INTRODUCTION 3

2. PHONES AND THEIR FEATURES 3
2.1 Vowel Features 3
2.2 Boundary Features 4
2.3 Consonant Features a
2-U Phonological Spellings of Lexical Forms 4

3. RULE DEFINITION fj
3.1 Right Side of Rules 6

3.1.1 Phone Name 6
3.1.2 Single Feature Specification 6
3.1.3 Multiple Feature Specification 7
3.1.4 Choice Specification 7
3.1.5 Spec; fication of Optional Occurrences 8
3.1.6 Specification of Repeated Occurrences 8
3.1.7 Examples of Complete Right Side Patterns 9
3.1.8 Indices of Right Side Parts 10

3.2 Conditional Part of Rules 11
3.3 Left Side of Rules 13

3.3.1 Consonant and Boundary Name 13
3.3.2 Vovel Specification Left Parts 14
3.3.3 Constructed Consonants 15

4. LEXICON AND SUB LEXICON DEFINITION 16
4.1 Definition of Lexicon Entries 16
4.2 Definition of Sub Lexicons 18

5. RULE APPLYING SUBRS 18
5.1 Substring Selection 19
5.2 Ordered Rule Subrs 19

5.2.1 Oneof Subr Parts 20
5.2.2 Allof Subr Parts 20
5.2.3 If and Unless Phrases 21

5.3 Unordered Rule Subrs 21
5.4 Nondeterministic Rule Subrs 23

6. THE 00ERY COHNAND 23

7. RUN COHHANDS 23

8. OUTPUT COMMANDS 25

9. DELETE COMMAND 26

10. THE EDITOR AND THE RECOMPILE COMMAND 27
10.1 The Editor 27

10.1.1 ML and MN Commands 28
10.1.2 PL and PM Commands 28

■

MM

i1!*^mmmm mrmmm ■ i. ji.yiummmmmmmum^K^mmmmmmt •mtm

21* January 1975 System Development Corporation
-2- T 8-5^78/000/00

10.1.3 DL and DN COBnands 29
10.1.U AL and AN coaaands 29
10.1.5 X CoBBand * 29
10.1.6 B CoaBand 30
10.1.7 General Conents About Editing 30

10.2 The Recompile Command 30

11. SYSTEM ASPECTS 32
1.1 Interaction with the Operatinq System 32

Loqinq in and Loadinq 32
Line Editinq Characters 33
Prompts and Breaks 33
Monitor Commands froB 1ISP 34
LISP Return and Loqqinq Out 34
Errors and Warninqs 35
Network Usaqe 36

CoBpiler Flaqs 37
ARPAbet Spellinq Packaqe 37
Execution Support Packaqe 39

,4.1 Internal Array Handlinq 39
Rule Callinq Sequences 41
Ordered Subrs m
unordered Subrs , ,»2
NondeterBinistic Subrs 43

n
11
11
11
11
11
11

11.2
11.3
11.4

11
11.4.2
11.4.3
11.4.4
11.4.5

Biblioqraphv ^

Appendices

1. COMMAND SYNTAX 45

2. PHONOLOGICAL SYMBOLS AND THEIR FEAT0BES 50

«M BMMBBMMtfBMMt - -

pi um fvmmm ipmmiiinpBnnn 1 ' m"m ...MM. ..m^mm^wm ' "

24 January 1975 System Oevelopnent Corporation
-3- TH-5a78/000/00

1. INTHODUCTION

\ phonoloqical rules systea has been inpleaented as a
^anquaqe extension of SDC INFIX LISP[11. The system can be
used in two modes: (1) as an interactive rule tester, and
(2) as a library of functions with other LISP programs. The
key laaquaqe capabilities are:

• definitions of phonoloqical rules,
•definitions of ordered rule application,
•definitions of unordered rule application,
odefinitions of nondeterministic rule application,
•lexicon definitions,
•sub-lexicon definitions, and
•multiple forms for words in tie lexicon.

The key system capabilities and features are:

•ability to edit and recompile all definitions,
•ability to output symbolics to a terminal, printer,
or disk file in a format that allows recompilation,

•ability to selectively test a rule or qroap of rules
aqainst a sinqle form, a lexicon entry, a sub-lexicon,
or the entire lexicon, and

•all phonoloqical rule definitions and all rule
applyinq subr definitions are compiled rather
than interpreted.

This document describes the phones and their features, the
individual commands, the available editor, and the system.
Appendix 1 qives a formal BNF definition of the commands.

2. PHONES AND THEIR FEATUPES

Appendix 2 summarizes the available phonetic symbols and
their features. The symbols used are from the ARPAbet».
Each phone has a KIND. The possible values of KIND are
VOWEL, BOUNDABY, and CONST (consonant).

2.1 VOWEL FEATURES

All vowels have the feature VOICE and a stress level. There
are three levels of stress: 0, 1, and 2. Stress lev^l 0
means reduced, stress level 1 means unstressed, and stress

» The ARPAbet is a phonetic representation aqreed upon by a
group of ARPA contractors for tra.)smittinq phonetic strinqs

and from a computer.

_„.

pmWPWW «ip ilM^T 1,1 «IIIW.« mm Hin iimPHPW99av«*v<^wniP«l|p«««piliippn9NPl||ippiR JNII.IWWU

2U January 1^75 Syste« Development Corporation
-*- TH-517b/000/00

level 2 means stressed. Schwa (ÄX) is always assumed to be
reduced. Other vowels may have their level of stress
specified by fcllowinq the vowel name with a colon and one
of the mteqers 0, 1, or 2. For cample, a reduced IH is
written IH:0, an unstressed 0« is written 0W:1, and a
stressed ER is written ER:2.

2.2 BOUNDABY FEATOHES

phones: which is There are two boundary
boundary, and #, which is a word boundary.
marked with any features other than BOUNDARY,

a syllable
Neither is

2.3 CONSONANT FEATURES

therefore have the
a CLASS feature, may

All other phones are consonants and
feature CONST. Each consonant also has
be marked VOICE or not, and may have a place of articulation
specified. The possible values of CLASS are NASAL, PLOS,
PPIC, AFRIC, GLIDE, LATERAL, CENTRAL, and MISC. The
respective meaninqs are nasal, plosive, fricative,
affncative, qlide, L, R, and miscellaneous. The presence
of the feature VOICE means that the phone is voiceri. All
the consonants except HH and the qlottal stop (Q) have a
Place of articulation feature. The values of PLACF are
LABIAL. DENTAL, ALVEOLAR, ALVPAL (alveolar-palatal)
and PALATAL.

VELAR,

2.a PHCNOLOGICAL SPELLINGS OF LEXICAL FORMS

Several system commands input an arqument form spelled in
APPAbet. The format of the spellinq is a sequ-nce of phonp
names enclosed in parentheses. For example, a phonoloqical
spellinq of HAVING is

(HH AE:2 V*IH:0 NX)

and a spellinq of BI" HOUSES is

(B IF G#HH AW: 2 Z ♦ AX Z)

Several points should be noted about the input format.
First, it is not necessary to enter the left and riqht word
boundaries (#) because the system automatically adds them.
Second, if a vowel other than schwa is entered without an
explicit stress level (:0, :1, or :2 following the vowel)
then rh;^ stress level is assumed to be 1. Third, all
contiquous pairs of svubols in a phonoloqical spellinq must
be separated from each other by one or more blanks unless at

HiftMiMMWIMMBHIIflltlMII

nmwt wmmmmm. «'<<"m'..mm w.-w~~*m i ' 'W ■ ^mmmmm mmmmmmmmmß*

2U Jctnuary 1975 Systen Development Corporation
-5- TH-5478/000/00

least one of then is '•(". M) •', "•", "t", or ••:". In the
latter case, though not required, blanks are pernissible.

3. BULE-fiEflHIIION

This section describes the comnand that causes a
phonological rule to be compiled into the system. A formal
syntax description of <rule> is given in Appendix 1. The
rule language is also described by Barnett in [2 1.

A rule definition is introduced
the rule name. The rule name is
of letters, digits, and periods,
digit. The rest of the rule c
egual sign (=) , a right side,
phrase. The right side of a
(schemata) of phone sequences,
(properly describes) an inpu
transformation described by the
the input seguence. The condit
additional criteria that must be
to be made. For example, a simp
a flap (DX) is

by $ follow
an identif
the first

onsists of
and an opt

rule spec
If the ri

t phonetic
left side

ional, if p
met for t

le rule fo

ed by a blank an^
ier — a seguence
of which is not a
a left side, an

ional conditional
ifies a pattern
ght side matches

sequence, the
is performed on

resent, describes
he transforioation
r changing a T to

$ FLAP DX=VOWEL/T/VOaEL IF ^fRESSdl GR STPESSiS;

The rule name is FLAP. The right side is VOWEL/T/VOWEL anj
describes a seguence of any vowel followed by T followed by
any vowel. The left side is DX, and the associited
transformation is to substitute DX for the sequence between
the / pair, in this case for T. The conditional is IF
STBESSdl GR STRESSa3 and it means that the transformation
shoull bn done only if the stress level of the first fhone
(first vowel) in the matched sequence is greater than t-he
stress level of the third phone (second vowel) in the
matched seguence. For exanple, the input seguence

IH:2 T TY: 1

would be transformed by FLAP to

IH:2 DX IY:1

However, the following sequences would not be transformed:

IH:2 R T IY: 1
IH:1 T IY:2

The first sequence is not matched by the riqht side because
of the presence of R. The second sequence is mafchea by the
riqht side of FLAP but fails the conditional test because

—

mmm^mm^m^m ■ Mllll.JIIIIII^I im in i »III.I ' ■ m.imni' " '

24 January 1975 Syste« Development Corporation
-6- TH-5478/000/00

the stress level of the first vowel is not greater than the
stress level of the second vowel.

The following subsections describe the right side» left
side, and conditional parts of r.ules and present soie
exaaples.

3.1 RIGHT SIDE OP RULES

an
pa
of
of
of

The riqht side of a rule describes phonetic seguences
therefore a pattern. This pattern consists of three
a Irtft contexc, a nucleus, and a right context. Any
three parts «ay be vacuous. However, at least one
three parts «ust not be vacuous. The nucleus part
riqht side matches the portion of the input sequence tha
affected by the tranr.fornation perforned by this rule.
left and right contexts specify the necessary environaen
which the nucleus is to occur. Nomally, the nucleu
deiiaited by a / pair. If the pair is not present, then
whole riqht side is assuned to be the nucleus and the
and riqht contexts are assuaed to be vacuous. The folio
paraqraphs describe the constituents (<riqht-part>s)
make up the nucleus and the left and riqht contexts.

i is
rts:

the
the
the

t is
The

t in
s is

fche
left
winq
that

Phone Naae

of

3.1. 1

The name of
that phone
occurrence
occurrence
level). If
vowel to a particular value, then follow the vowel name with
a colon and an explicit stress level. Thus, to specify th«-«
occurrence of an IH with 2 stress, write IH:2.

a phone may be used to specify the occurrence of
in the input strinq. For example, «1 means the

n in the input strinq, and IY means the
of IY in the input strinq (with any stress
it is desired to restrict the strejs level of a

3. 1.2 551 £3 if _f ea t u re_ S-Pegif ica t ion

The occurrenje of any phone with a specific feature may be
specified. For instance, BOIJHDÄBY aay be used to specify
the occurrence of either • or #. Siailarly, CONST specifier,
the occurrence of any consonant, and VOWEL specifies th*
occurrence of any vowel, in a like Banner, the values of

PLACE (such as NASAL, which specifies the
of H, N, or NX, or VELAR, which specifies the

or G) aay be used. Also, VOICE
occurrence of a voiced phone.

of any vowel with a specific
followed by a colon and an

CLASS and
occurrence
occurrence of either NX, K,
may be used to specify the
To specify the occurrence
stress level, write VOWEL
explicit stress level. Por exaaple, to specify the

MÜ

-~~~~~r~~v~~~v ^^«■vnPfpnH«pianmr i. iniiMpi"r>— i i I i ni" I« « mi ■IT'■^■■*■^v~^,,»"' ■ '

24 January 1976
-7-

Systei Developient Corporation
TH-5U78/000/00

occurrence of
described speci

Plus (♦)
followinn is n
dressing. Hin
specification
specifies the
specifies the
and -R specific

a reduced vowel,
fications mav be
■erely eaphasi

ecessary; the
us (-), on the
followinq mist
occurrence of

occurrence of an
s the occurrence

write VOWFL:0. Any of the
optionally preceded by • or

zes that the specification
♦ is therefore lust window
other hand, aeans that the
not occur. Thus, -VOICE

any unvoiced phone, -VELAR
y phone except NX, K, or G,

of any phone except R.

3.1.3 1 ultiple Feature Specification

The occurrence of a phone that sinultannously possesses
several features «ay be specified fcy a <fpaturk.-bundle>. A
feature bundle is represented as a sequence of feature
specifications (including phone nanes, choices and other
feature bundles) enclosed in pa «-on theses. The included
specifications nay be preceded by ♦ or -. For exanple,

(FRIG LAEIAL) and (FRIC*LABIAL)

tiotti specify the occurrence of a labial fricative, i.e.,
either F or V. The feature bundles

(FRIC-LABIAL) and (♦FHIC-LABIAI)

both specify the occurrence of a non-labial fricative, i.e.,
TH, S, SH, DH, Z, or ZH. An exanple of a nested feature
buriln is

(FPIC- (LAEIAL + VOICE))

This specifies the occurrence of any fricative that is no*-
both voiced and labial. It could have been written more
simply as

(FRTC -V)

3.1.U Choice Specificatign

The occurrence of a phone in the input sequencp »ay ba
specified as a <choice> aaonq spveral specifications. The
individual choice specifications aay be phone naaes, a
feature, or a feature bundle.. The choices are separated by
OR. For exdople, the choice

NASAL OR (PLOS*VOICE)

specifies the occurrence of a nasal or a
Thus, it would aatch any of N, a, NX, B,

voiced plosive.
1, or D. For

...

 '«" 1' " ,■^- "»• ' • ' " » »■P

24 January 1975
-8-

Systei Developaent Corporation
TH-5a78/000/00

another exaiple, tb« choice

GLIDE OB R OB L

specifies the occurrence of any of Y, «, B, or L. Thp
equivalent of an AID operator is provided throuqh the
feature bundle lecbanlsa.

3.1.5 Specif icatiM_of_ÖJ?.tLfiMl_0SSUIienSü5

The optional occurrence or a phone in the input 3trinq can
be specified by an <optional> phrase. The word OPT is
followed by a phone na»e, feature, feature bundle, or
choice. For exaaple, the specification sequence

VOMEl, OPT F. T

would »atch both of the followinq input strinqs:

IT R T and IT T

If a phone is detected in the input strinq that natches the
specification of an optional phrase, then it is passed over
before a natchinq of the rest of the input string to the
rest of the pattern is atteapted. This leans that there is
no autoaatic backup. To illustrate this, the pattern
sequence

VOHKI, OPT VOICE, B

would »atch the input strinq

ow \X P

but would not natch the input strinq

OH R D

In fact, the above pattern sequence would natcn nothinq that
did not dlso natch the pattern sequence

VOHEL, VOICE, B

I

3.1.6 Specif xcatioa_2JLJi^fiJted_SccurreBcss

The ropoa d occurrence of phones that natch a particular
set of cr eria nay be specified by a <repeat> phrase. The
phrase is introduced by the word BBP followed by th» iininum
acceptable nunber of occurrences (a noa-neqative integer)
and the natch criteirion. The natch criterion nay be a phone

mm

24 January 1975 Systea Development Corporation
Tfl-5«478/000/0ü

exanple, a naae, feature, feature bundle, or choice. For
pattern that latches any aonosyllabic word is

«, REP 0 CONST, VOBEL, HEP 0 CONST, f

In the above, the input sequence is specified to include a
teqinninq word boundary (•) followed by zero or more
consonants, a vowel (at any stress level), zero or more
trailinq consonants, and an endinq word boundary. In the
next example, the pattern sequence will match the beqinninq
consonant cluster and vowel in a syllable whose initial
cluster contains at least two phones.

BOUNDARY, BEP 2 CCNST, VOWEL

Repeat phrases, like optional phrases, do no backup.
repeat matches as many phones in the input strinq
possible. (If at least the specilied minimuir number
occurrences are found, then matchinq of the rest of
input strinq to the rest of the riqht side continues.)
example, the pattern sequence

The
as
of

the
For

hEP 0 CONST, P

would not match anytninq because R is a CONST, and as such
would te passed over by the repeat. This may be remedied by
rewritinq the pattern sequence as

HEP 0 (TONST-R) , R

This second pattern sequence does the jot because in Enqlish
two Ps can not occur in the same consonant strinq unless
separated by a syllabi^ or word boundary.

3.1.7 E*amBles_of_Cofflßlete_Riaht_Side_ Pat terns

rule
Each

Ihe complete riqht side of a
a loft and a riqht context,
the riqht side comprises a
features, feature bundles, choices,
repeat phrases. The nucleus is
pair. The nucleus is the

consists of a nucleus and
of these constituents of

sequence of phone names,
optional phrases, and

normally delimited by a /
portion that will be replaced if ,'....>.. ...». ..vi^i.r-v»o xo «.iic p«.»1.1iuii i.iia< wixx oe replaced it

the rulo applies. The members of the sequence are separated
from c\ch ether by cowBas. Tf a / separates two
specif ic.i tions, then a comma should not be used.

V0W2L/T/VCWEI
The left context is the one-element sequence, VOWEL. The
nucleus is the one-element sequence, T. The riqht context
is the one-element sequence, VOWEL. It a rule with this
riqht side matches a pattern, then the nucleus (T) would be

mam ■

24 Januar? 1975 Systea Development Corporation
-10- TH-5«» 78/000/00 r

replaced by the sequence qenerated by the rule's left side.

/D OB T, BOUNDABY/Y
In this example, the left context is vacuous, and the right
context is the one-phone sequence, Y. The nucleus is the
two-element sequence D OB T, BO0NDABY. The nucleus matches
any one of these four input sequences:

D ♦, D «, T ♦, and T #

VOWEL, NASAL or /VOHEL, VASAL/
Both the left and riqht contexts are vacuous in these tvo
equivalent pattern sequences. The nucleus is the
two-element sequence VOHEL, NASAL. These two examples
illustrates the point that if the / pair is omitted from the
rule's riqht side, then the entire riqht side is the
nucleus.

NAJA1//PL0S
In this example, the nucleus
marks a place at which the
string if the rule matches.

is vacuous. The / pair merely
left side can inrfert a phone

3. 1.8 Jn iices_of. Bigbt_Sidg..Par ts

components of a conditional phrase and a rule's left side
can reference features of the phones that were matched by
the rule's liqht side. The referenced phone is specified by
ü tollowed by a strictly positive inteqer. Bach riqht part
in the riqht side is assiqned an index number starting from
one. For example, in the pattern sequence

VOWEL,OPT BOUNDARY/IY OR IH,REP 1 LABIAL/(PLOS-VELAR),»

there are six riqht parts:

1 VOWEL,
? OPT BOUNDARY,
3 IY OR IH,
1 REP 1 LABIAL,
5 (FLOS-VELIB) ,
6 *

and

Thouqh optional or repeat phrases are assigned index
nuitbers, the features of the phones they match may not be
references because it is indeterminate whether they matched
anythinq at all and, if so, how many phones wern matched.
Example uses of indexed references and their meanings are:

NAMEdl name of phene matched by the first right part

MMH - ■

BHn **«».--,-
mmmmmmmm

24 January 1975 System Developa.^nt Corporatiori
-11- "«-5478/000/00

KIND(i2 kind of phone «atched by the second right part
PLACEan place of phone Batched by the third riqht part
CLASSdi2 class of phone Batched by the second riqht part
v'CICE^I voicinq of phone matched by the first riqht

part
-VOICE33 inverse of the voicinq of pho .e Batched by the

third riqht part
STRESS«1 stress level of phone matched by the first

riqht part

3.2 CONDITIONAL PART OP ROLES

Use of a <conditional> with a rule is optional. If the
<conditional> is omitted, the only criterion for a rule's
matching an input strinq is that the riqht side of the rule
properly describe (match) the strinq. If a conditional
phrase is used, it presents additional criteria that must
also be satisfied for the rule to match the input strinq.

The form of a conditional is the word IF followed by the
body of the conditional. The body is a series of
relationships separated by the word AND or OR (inclusive).
AND binds tiqhter than OR. Thus, if rl, r2, and r3 are
relations, then the meaning of

rl OR r2 AND r3 is rl OR (r2 AND r3)

To overcome the normal bindinq scheme, parentheses may be
used to explicitly qroup the relations and operators. For
instance, to achieve the other interpretation of the above
exbaple, 'rite

(rl OK r2) AND r3

Relations may either test a feature of a single phone or
compare the features of two phones. Tests are usually
indicated by usinq one of the operators EO, NQ, GQ, LQ, ÜR,
and LS. An example of a relation is

PlACEfil NO PlACEa3

which is satisfied if tie place of articulation of the phone
matchinq the first ri^bt part is not equal to the place of
articulation of the p .one matchinq the third riqht part.
(See section 3.1.8 for an elaboration on the meaning of
indexed references to riqht parts such as *1 and d3 in this
example.) Another example of a relation is

CLASS<D2 EC FRIC

which is satisfied if the class of the phone that matched

«MIMM

 ' '—"

24 January 1975 System Developnent Corporation
-12- TH-5478/000/00

the second riqht pact is FRIC. At first, this aay seen
unnecessary. Could not the second ciqht part lust have been
written FPIC and the relation not used? To answer this
question, consider this ezaaple riqht side and conditional:

CONST, PLOS OB FRIC IF VOICEdl OB CtASS<i2 EQ FRIC
I

Toqether, the riqht part and conditional aatch a two-phone
sequence if either the first phone is voiced and the second
phone is a plosive or fricative, or if the first phonn is
any consonant and the second phore is a fricative. To write
such complex matchinq criteria as this, it is necessary to
have conditionals and to be able to write tests aqainst
constants.

Relations that test a phone's Jcind, class, place, and name
may be written in one of two ways as demonstrated by the
above examples. In the first way, an indexed feature
cateqory is compared by the operator EQ or NQ to a constant
value in that feature cateqory. Examples are:

KIND«« EQ VOWEL
CIASS31 NC PICS
PI AC £3 2 EQ VEL&B
NAflEnÜ NC IY

The second method of comparison matches the
of two different phones. Examples are:

feature values

KTNDd3 NQ KINDd)1
CLASS* 1 EQ CLASSY
PLACES 3 NQ PLACED
NÄf1E(i2 E0 NAKEäl

Relations involvinq stjess level may be made in
manner. In addition, the operators GQ, LQ, Grt,
bo used. Some examples are:

STRESS(J2
STBESSil

GR 0
LS 3TRESSd3

a similar
and LS may

The possible constant values of stress level are 0, 1, and
2.

Since there are no symbols for constant values of voicinq,
the sinqle-phone tests are written as in these examples:

VOICED
-VOICES 3

Comparisons between the voicinq of two phones are written as
in these examples:

MMk ■■- - ■■-- mm* —- ■ - - —*

vmmmmm*mmi*w**m*mm 1 ■" ■ ■■,"" ' '

2a January 1975 System Developmeat Corporation
-13- TH-5478/000/00

V0ICE?2
VOICES 2

EO
NQ

voicEaa
VOICE91

Onl? thp operators
comparisons.

EQ and NQ «ay be used in voicing

3.3 LEFT SIDE OF RULES

The <left-side> of a rule specifies the sequence of phones
that is to replace the sequence of phones that was Hatched
by the nucleus part of the rule's riqht side. If the
sequence to be substituted is vacuous, then the left side is
NIL. For example,

$ DEGEM NIL=/C0NST/OPT BOONDARy, CONST
IF NAHEil EQ NAMEa3;

This is the version of the standard deqemination rule that
removes the first consonant of a doubled pair whether or not
they are separated by a word or syllable boundary. DEGEM
produces the followinq transformations:

T T
S*S
Mtfl

to
to
to

T
♦ S
«n

If the sequence to be substituted is n^t vacuous, then it is
represented by a sequence of <left-part>s separated by
commas. (In a prior version of the system, a rule could
have multiple sequences of left parts. See f^l.) The
allowed kinds of left parts are consonant names, bouniary
names, vowel specifiers, and constructed consonants. The
followinq paraqraphs describe the different kinds ot left
parts and present some examples of complrto rules.

3.3.1 Consonant and Boundary Name LeftParts

I

A consonant or boundary name may be used as a left part.
For example, in the rule

$ FLAP DX=VOWEL/T OR D/VOWEL
IF STRESSai GR STRESSa3

DX is a left part. Tt is substituted for an intervocalic T
or D whenever the stress level of the first vowel exceeds
that of the second vowel.

In addition, consonants and boundaries may be specified <is
left parts by use of index numbers. For example.

- ii 11 niii—i

MliimjiiuiiiivM i f JWW •^^mmmmmmimmmmmmm^^i'^^mimm

24 January 1975
-14-

Systea Oevplopaent Corporation
TH-5U78/000/00

$ POO 3,2=VOHEL/BOaHD»8YrR OB L/VOiEL;

In this exaiple, the two phones natchinq the nucleus are
t onsposed. The index 3 references the phone R or L, and
t.ie index 2 references the phone ♦ or # that Hatched
BOUNDARY. Two transformations that would be produced by
this rule are

AH*R IY to AH R*TY
AXIL UN to AX LiUW

Index references are restricted to phones that are matched
by the riqht side. Thus, it is illeqal to reference, say,
the first phone followinq the strinq «atched by the pattern.

1. 3.2 .yowel_S£ecif ication_iefJ;_Parts

The specification of a vowel in the reconstruction sequence
aidv bo icconpushed in a variety of ways. The vowel nane
and the stress level «ay be qiven explicitly, the naie
and/or atreflfl level nay be borrowed usinq indices, o: the
£.tr'»ss level nay be borrowed iaplicitly. The various
techniques are deacnstrated by the followinq exaaples.

i R1 III: 1=/V0HEL/0PT rfOai<DARY,N:
la this example, an 1H with stress level one is substituted
for the vowel that matched the first riqht part.

i H2 IHJ1=/V0WEL/0PT BOUNDARY,N;
like the above example, IH is substituted for the vowel that
matched the first riqht part. However, the stress level is
borrovcd from the oriqinal vowel by il. Thus, if the input
strinq were IY:0*N then rule Hi produces IH:1*N and rule R2
produces IH:0*N.

$ RJ 1,R=/VOWEL.*,ER:0/:
As with consonant and boundary names, vowel names may be
referenced by an index. In this example, the left part 1 is
whatever vowel (and its stress level) that is matched by the
first riqht part. Thus, R3 would transform the input strinq
AH:2*EE:0 to ÄH:2 R.

S K4 1i»3,R = VOWEL,*,ER;
This example is like P3 except that only the vowel name is
torrowed from the phone aatchinq the first riqht part. The
stress level is borrowed from the EP that matches the third
riqht part (by the «3). Thus, P4 would transform the input
strinq AH:2*ER:0 to AH: 0 R.

m* M« mm*. - - ■ - ■

_, "—-»» PPW!^— ■ i ■. »niiiiiMapnMPpviiapinmnMmipqninpip

2U January 1975
-15-

Systea D^^elopaent Corporation
Tn-5a78/000/00

$ R5 IH=/IY OF EH/N;
In this exaaple, only a vowel naae (IH) is qiven as a left
part. When this fora of left part is used, the stress level
is botrowed froa the phone '.hat Batches the first vowel
specification in the nucleus. These are two transforaations
that result froi the application of rule B5:

IY: 1 N to IH: 1 N
EH:0 N to IH:0 N

Another example of iaplicit stress borrowinq is rule R6:

$ R6 ER=VOWEL,B,*,VOHEL:

R6 transforms the input string EH:2 R*AX to ER:2 because the
stress level is borrowed froa the first vowel.

Two things
parts: (1)
AJC: 0 because
(2) when an

should be noted in usinq vowel-specifyinq left
it is illegal to weite such thinqs as AXaH or
AX is autoaatically qiven a stress of zero, and
iaplicit stress level is borrowed, it is npver

ta en from a vowel that was aat.ched by a repeat or optional
phrase; it is borrowed froa the first other riqht part
the nucleus that specifies a vowel Jif there is
then each choice must specify a vowel).

H-i tT- in
a choice.

3.3.3 Constructed .Cfvasonants

Some consonant phones may be constructed by specifyinq their
teaturos. Specifically, the class, place of articulation,
and voicinq must be specified, in that, order, and enclosed
tv parentheses. Some examples of constructed
a re: consonants

(NASAL ALVEOLAR VOICE)
(PLOS PLACEa2 -VOICE)
rcLASsaa LABIAL VOICED I)

The first exaaple is equivalent to havinq written N.
class sppcificaticn may be either a class name or the
CLASS followed by D and an index.. Examples from the
are NASAL, PLOS, and CLASSa3. In the last case, the
of th^ constructed phone is made the same as the cla
the chono that aatched the third riqht part. in a si
manner, th" place of articulation aay be either a fjlace
or th»> word PLACE followed by i and an index. Examples
the abo/H are ALVEOLAR, PLACEd?, and LABIAL. Voicinq
construcv€d consonant is snecified by either VOICE or -
witn the ohvious aeaninqs, or by use of a borrowed voi
p.q., V0icEaJ3 or -VOICEd2. An exaaple of a rule that u
constructed consonant is:

The
word

above
class
ss of
milar
naae
from
of a

VOICE
cinq,
ses a

mmmm «MMM

iqmmmm ^'""^"^''«'^«IPBPPPIBWPIiPlPWiil >l"« W^PPBP^W^^^pn mmm *~^^^*^m^m~*mm "•'"P^'PW !

24 January 1975 Syste» Development Corporation
-16- TH-5a78/000/00

$ JHA 2,(AFRIC ALVP1L V0ICBd1)=T Ok' D, BOUNDARY ,Y

This rule »ould make transformations such as

D*Y to »JH
lit to tCH

A caution should be observed «hen usinq constructed
consonant for»s — namely, that there exists a phone with
the specified class, place of articulation, and voicing.
Because of this, i 5: is illeqal to construct a consonant in
the class HTSC. It ;s the user's responsibility to quard
against the qeneration of illeqal phones. The system does
little run-time checlcinq.

*♦• LEXICON. ANP-SUJrIIXI£OJLDEfIlITI ON

This section describes the commands that are used to define
lexicon entries and fora sub-lexicons. Appendix 1 qives a
formal syntax description of these forms (<lexicon> and
<sub-loxicon>).

U.I DEFINITION OF LEXICON JNTRIES

There arc? three basic forms of the lexicon command: (1)
add, reolace, or modify a lexicon entry; (2) auqment a
lexicon entry; and (3) print out a lexicon entry. All
lexicon commands heqin with the word LEI and end with a
semicolon. A lexicon entry is identified by a word, e.q.,
an identifier such as HELLO or ONE.TWO.THREE. Associated
«ith «'ach word in the lexicon are one or more APPAbe«-
spellinqs. Each of th^se spellinqs is called a lexicaJ base
form or, more simply, -just a form.

The basic command that adds a neu
lexicon is the word L2X followed
spelled in ARPAbet (as described
a phoncloqical spellinq of the
command:

word and its forms to the
by the word and the forms
in Section 2.4). To enter
word TOTAL, input this

LEX TOTAL (T 0 i: 2 T*AX L) ;

Rocili that the exterior word boundaries are automatically
added so that the actual spellinq is

It OW:2 T*AX L»

If it is desired to enter the word T3TAL with two forms,
then the forms are separated by commas; for example:

- " - •'

mm~mmmmmm'*''**m ■" immmm

2H January 1975
-17-

Systea Developaent Corporation
TH-5a78/000/00

LEX TOTAL (T 0i:2*T IX I.), (T ^V:2 T*OH:0 L) ;

«ith either of the above examples, if TOTAL was already in
the lexicon, all existing forms would be deleted, and the
new definition would conprise the entire set of forms for
this word.

Various commands allow the forms to be referenced
individually. The lanquaqe mechanism is the word followed
by a colon and an index number. Thus, given the second
definition above of TOTAL,

and
TCTAL:1 is iT 0W:2 T^AX Li

T0TAL:2 is #T 0«:^ T*UH:0 L»

It is also possible to selectively alter the definition of a
particular form as opposed to redefininq th-j whole entry
For example, after

LEX T0TAl:2 (T 0H:2 T*ÄH:0 L) ;

T0TAL:1 is unaffected but

TOTAL:2 is now #T 0i:2 T*AH:0 II

When usinq this form of the lexicor. comraand, the index must
reference an existinq form or be one qreater than the number
of forms currently in existence. In the latter case, the
new form i? added to the lexicon entrv.

New forms nay easily bo added to the lexicon entry. Assume
that the command

LEX CUP (K Ah P) ;

has been «xecuted, and then the command

LEX Cnp* (K AH B) , (K U H P) ;

is entered. There are now three ferns of the word CUP:

CUP: 1 is »K AH: 1 P#
CUP:2 is iK AH:1 Ei
CUP:3 is #K UH;1 P#

Thur., new forms are added by usinq ♦ followed by one or more
ARPAbet spelJinqs.

The lexicon command i* also used to output forms to the
user^s terminal. Given the above definition of CUP. the
command

■- ' inn i Ma

'■■ ■"" •,,"",",,l,n u.<^ iwiv.nppmp ■"" ■•

24 January 1975
-18-

Systea Developaent Corporation
T«-5478/000/00

LEX CUP;

would output all three spellinqs. The coiaand

LEX C0P:2;

would only output the spellinq of CöP:2.

4.2 DEFINITION OP SUB-LEXICONS

A sub-lexicon is defined by a <sub-lexicon> coanand. The
tornat of the coamand is the word SLEX followed by the
sub-lexicon naae (an identifier) . and the constituents
separated by coaaas. For exaaple,

SLEX EXAMPLE TOTAL, CUP:2;

The sut-lexiccr. EXAMPLE is defined to contain all the foras
of the word TOTAL but only the second fora of the word CUP.
A word or its foras aay appear in any nuaber of sub-lexicons

A sub-lexicon definition is aaintained in syabolic fora.
Therefor«, the actual foras that constitute the sub-lexicon
are those in existence when the sub-lexicon is referenced —
not necessarily the saae as those in existence when the
sub-lexicon was defined.

•i. HyLB_4PPLYING_SUBR3

When a rule is operated on a phonetic input strinq, it is
usually desired to try it on all substrinqs, not just the
input as a whole. Therefore, qiven the rule,

$ FLAP DX = VOilEL,üPT BOUNDAFY/T CR D/OPT BOUNDARY ,V OW EL;

the desired transforaation of

«HH AH:1 TtAX#D EY:2# is ÜH AH: 1 DXiAXIDY EY: 21

Thus, it is necessary to define the alqoritha by which a
rule is tried on substrinqs of the input.

Also, it is usual to operate rules iu qroups. Such a qroup
is called a rule set. At issue is the aethod of definxnq
the constituents of a rule set and the order dependencies of
the set aeibers. Th« systea provides three aethods of
specification: (1) ordered rule sets — nornally used with
"obliqatory" rules, (2) unordered rule sets — noraally used
with "optional" rules, and (3) nondeterainistic rule sets --
noraally used for fun. All three types are defined by

^M ' ■ ■

■HMiMM^MK.^.-

■P' • i» (■ .iiippiippmi^HB •mw ii imiiiMi ■«piRini iii iijpi.|||ijiiaili*Ji

2a January 1975
-19-

Syste» Development Corporation
TH-5a78/000/üO

<subE> connands.

The following subsections describe substrinq selection
algorithms and the methods of defining rule-applying subrs.

5. 1 SIIBSIRING SELECTION

An input string is a phonological spelling of a word or a
seguence of words. It is unusual that a rule will match (or
was intended to match) the entire input string. Therefore,
the rule set appliers must select substrings as possible
candidates on which to try the rules. By example, the
possible substrings of

iK AA:2 N#D UW: 1#

are

#K AH:2 its nw:l#
K AH:2 N#D UW: 1»
AH:2 N«D UW:1»
N#D UW:1#
to Di:1i
UW: II

Because neither optional nor repeat phrase (in the right
side of rules) oerform backtracking and because rules permit
arbitrary parts of the input string to exist to the right of
tue substring matched by the right part, the above spt of
substrings is sufficient. With the different type--; of
rrle-applying subrs, the interaction (ordnring) of mottbers
Of the rule set with substrings of the input <ind substrings
of the derived strings may differ as described below.

5.2 ÜRDFHEC RULE SUERS

I

word sriBP
h sequence of

a

An ordered rule-applying subr is defined by the
followed by its name (an identifier) and
<subr-part>s separated by commas and tenoinatpd with
semicolon. The word nKDF.»ED may follow the word 3ÜBR but is
not necessary -- ordered subrs are the default. In
operation, the first subr part is applied to each substring
of the input in turn, left to right. Then the second subr
part is applied to each substring, etc. Tf a rule in a subr
part matches the input string, it is immediately transformed
by the rule, and the rest of the processing continues at the
same phon^ position in the derived string. T'.us, the subr
parts and i-he rules they comprise are treated as obligatory
transforuMtions. The algorithm is presented symbolically in

 "", ^^immm^mmmmmr^^ m^mtmmm

2U January 1975 Systea Development Corporation
-20- TH-5U78/000/00

DEFINE RUNB0LE(SUBBPARTLIS1(ABPASPELL)
DO SPELLS A BPAS PELL;

LSPELL:=LENGTH(SPELL);
FOB SUEBPART IM SOBPPÄRTLIST

DO FOR I:=1 STEP 1 OHTIL I>ISPELL
DC SOBBPABT(SPELL,I) ;

END FOR;
END FOR;

END HriNPOLE;

Figure 1
ORDERED RULE APPLICATION ALGORITHM

Fiqure 1. Application of a subr part SUBRPART(SPELL,I) ,
operates on the substring starting at the Ith phone
position. As a side effect, the values of the variables
SPELL and LSPELL (spelling length) aay be altered.

A subr part may be a rule lame or a oneof, allof, if, or
unless phrase. A rule nane used as a subr part means simply
operate the rule at the proper times. The following
paragraphs describe the other kinds of forms that may be
used as subr parts.

2. 1 Qneof_ Subr Parts

A oneof subr part is introduced by the word ONBOF followeii
by a parenthesized list of one or more subr parts separated
by commas. For example,

0NE0F(R1,R2)

The rule names in and R2 are the embedded subr parts. A
oneof phrase runs its embedded subr parts (in the left to
riqht order of their appearance) on the currently visible
substring. If any rule in a subr part matches the input
substring, then after the completion of the operation of
that subr part, the rest of the oneof phrase in which it is
embedded is skipped. Therefore, in the above example, if R1
matches the input substring, then R2 is not operated.

f». 2. 2 A1 IpjE_Sub.c. Partj

An allot" subr part is introduced by the ^ord ALLOF followed
by a parenthesized list of one or more subr parts separated
by commas. For example.

'm • «■»■■'■ > "|-" ■■, ■ ■ mm -•^-—- WFvmm^^m**"'

2H January 1975 Syst«»» Developaent Corporation
-21- TH-Sa78/000/00

AILOP (ONEOP(P1,32) # B3, R4)

The embedded subr parts are the oneof phrase üNEOF(R1fR2)
and the rule names R3 and BH. An allof phrase operates the
embedded subr parts in the specified order, left to nqht.
In the above example, R1 is operated; if it matches thp
input substring, then R3 and RU are operated on the
transformed strinq. Otherwise, rules R2, H3, and RU are
operated in that order. Recall that all embedded subr fdrts
arc run on the substrinq startinq at the same phonp
position. Therefore, caution oboald should be exercised to
ensure compatibility of operation with
intentions.

your oriqinal

5.2.3 I i_ aM_U alfiss_ Phases

If and unless surt parts provide for standard if-then and
if-then-else control loqic. An if phrase is introduced by
the word IF followed by a subr part, the word THEN, another
subr part, and optionally the word ELSE followed by yet
another sutr part. unless phrases are identical in format
to if phrases except that they are introduced by the word
HNLESS instead of the word IF. if si, s2, and s3 are subr
parts, then the possible formats arc:

IF si THEN s2
UNLESS si THEN s2
IF si THEN s2 ELSP s3
ONLESS si THEN s2 ELSE si

For the first format, si is run. Tf any rule run in ^1
matches th* input, then s2 is run. Otherwisp, s2 i <=
skipped. For the second format, si is run. If no rule run
in si matches the input, then s2 is run. Otherwise, s2 is
skipped. For the third format, si is run. If any rule run
in si matches the input, then s2 is run. Otherwise, s3 is
run. For the fourth format, si is run. If any rule run in
si matches the input, then si is run. Otherwise, s2 is run.
All applicable embedded suor parts (si and s2 or sj) are run
on the suhstrinqs at the same phone position. (Tf si
matches the input, the input is transformed before the
operation of s2 or s3.)

5.3 UNORDERED RULE SOIT.S

An unordered rule-a pply inq subr is defined by thp word SIJQR

followed .'y the word UNORDERED, its name (an identifier),
and the n.^e of the rules in the rule set separated by
commas. Fot example:

- - -

"«I • < •*•! I "mit I ■" ■■ "" '■ ■'

24 January 1^75
-22-

Systea DeTelopaent corporation
TH-5U78/000/00

DEFINE RDMPULE (R U'.ESET . ABPASP^LL)
DO LOOPERCRUL iSET.AHPftSPE-L,!) ;
END RUNRUIE;

DEFINE LOOPEB (R ULES ET , ARPASPELL, I NDEX)
DO PRINT(ARPASPELL) ;

FOR I: = I EX STEP 1 OITIL I>LEHGTH (AHPASPELL)
DO FOR äULE IN BULE5ET

DO CHANGES : = RULE* ARPASPEI.L, I) ;
IF CHANGES

THEN DO NBISPELL^HAKECHANGEURPASPELL,
CHANGES);

LOOPER(RULESET,NEHSPSLL,I);
END;

END FOB;
END FOR;

END LCOPEP;

FiQure 2
UNORDERED RULE APPLICATION ALGOBITHH

Fiqure 2

SOBR UNORDERED XYZ Rl,R2,R3;

XJZ is «ietined as an unordered tule-applyinq subr that
operates the ruls set that conrists of the rules Rl, R2, and
R3. Fiqure 2 shows the rule-application alqorith«. When a
rulo is run on an input strinq (CHANGE: = RnLB (ARPASPELL, I)),
it is passed two arquaents: (1) the total input strinq and
(2) ^he phone position at which the current substrinq

rule is false if the rule does not
strinq. If the rule does natch,
of chanqes that should be produced

The function, HAKECHANGE, td><es
and (2) the set. of
spellinq with the

starts. The value of the
match the current input
then the value is the set
by the rule's left side.
two arquaents: (1) the oriqinal spellinq,
change instructions. The value is a new
chanqes aade. The oriqinal
ARPASPELL) is not altered. As
tracing through LOOPEB, each rule
position of the input strinq,
applications of rules in the set.

spelling (the value of
can readily be seen by

in RÜLESET is run at each
with and without other

The critical difference between an unordered ani a
nondeteraimstic rule subr is the following case. Assune
that rule Rl applies to the input substrinq starting at
phone position I, and rule R2 would apply to the input
substring as produced by *he transformation done by the left
side of Rl, but starting at phone position i2 whe^e i2<i1.
Then an unordered subr will not operate R2 after Rl, while a

"""--■" ^m WWW"^^1"' ,l" ■ ■ '■"'■■"■■^■^W^PP^^^*»«^^^^"«—»W^^^BF

2U January 1975 System Development Corporation
-23- TH-5478/000/00

nondetermlnistic subr ■ill. The advantage of the unordered
subr is that it is auch faster. In almost no case will tie
difference in output be noticeable.

5.1 NONDETBPHINISTIC HOLE SUERS

The format of a nondeterministic rule subr is identical to
that of an unordered rule subr except that the keyword
NODETEK« is used ::ather than UNORDERED, For example:

SUB1? NODETER« XYZ Rl,R2fR3;

defines the rule-applyinq subr XYZ with rule set Rl, R2, and
Bl. Fiqure 3 shows the algorithm Uir3d for nondeterministic
rule aoplication. In operation, a nondeterministic subr
attempts to apply every member of the rule set aqainst every
possible substring of the input and the derived strings.
This process continues until no new spellings can be
generated and then terminates.

6. THE. i2UEBY_ COM HAND

A ? may be used
defined entries.

to query the system for the names of the
The four forms of the <guery> command are:

? RULES;
? SUBRS:
? SLEXS:
? LEX:

Ihe respective meanings are: (1) output the nimes of all
(iefin^d rules, (2) output the names of all defined
rule-applying subrs, (3) output the names of all defined
sub-lexicons, and (4) output the names (not the spellings)
of all defined lexicon entries. All output is to the user's
terminal. For more detailed output, see Section U on the
lexicon ccmmand and Section 8 on the output commands.

7. RUN COHHANDS

There are three commands that «a y be used to run a rule subr
aqainst a form, a word in the lexicon, a sub-lexicon, or the
whole lexicon. The commands are <run>, <1oe>, and <mary>.*
The run command beqins with the word RUN followed by the
name of d rule-applyinq subr and the specification ot the

* Thn nmos were chosen purely arbitrarily.

MBM^M«. ■ -- - ._

i ii lamiiPBiL |» UMIII r^— »W-. -TP-W- "-"•

2U Jdouary 1975
-2a-

System Deyelopaeiit Corporatioi.
TH-5478/000/00

DEFINE HUNBUI.E (RULES ET, ABPÄSPELL)
DO DCNESET:=EflPTY;

TBYSET:=SFT OF (ARPASPELL);
i:IF EHPTT (TFYSET) THEH GO D;

SPELL:=CHOICE OF(TRYSET) ;
ADD SPELL TO OONESBT;
REMOVE SPELL FBOH TRYSET;
FOR I: = 1 STEP 1 UNTIL I>LENGTH (SPELL)

DO FOR RULE IN BOLBSBT
DO CUANGES:=BULE(SPELLrI) :

IF CHANGES
THEN DO NBUSPELL:=HAKECHANGE(ARPASP£LL(

CHANGES);
IF NENSPELL NOT IN TRYSET AND

HEHSPELL NOT IN DONESET
THEN ADD NEHSPELL TO TRYSET;

END;
END FOB;

END FOR;
GO X;

D:FOR SPELL IN DONESET
END RUNRULE;

DO PRINT(SPELL)

Fiqure 3
NONDETEBNINISTIC BOLE APPLICATION ALGORITHM

input £trinq(s) . The joe command is the word
by the specification of the input strinq(s).
unordered rule-applyinq subr that uses ail ra
currently defined. It is automatically reco
implicit subr command whenever it is necessar
command is the worl MARY followed by the spe
the input strinq(s). MARY is a non
rule-applyinq subr that uses all the rul
currently defined. It is automatically reco
implicit subr command whenever it is necessary
of the run commands are terminated by semicol
subr is operated, all derived spellinqs are
with the names of the rules that have tra
strinq. The forms of the input strinq speci
descri. 5d by example.

JOE followed
JOE is an

les that are
mpiled by an
y. The mary
cification of
deterministic
es that are
mpiled by an

All forms
ons. When a
output a: Lonq
nsformed the
fication are

RON XYZ (T EH: 2 S T) ;
The rule-applyinq subr XYZ is operated aqainst the qiven
ARPAbet spellinq with exterior word boundaries appended
automatically.

JOE TEST;
The rule-applyinq subr JOE is operated aqainst each form of

wmmmwmrmmm llJI"1" '■■'■ii" 11 " • "IIIIIUI1 '

24 January 1975 Systen Developnent Corporation
-25- 111-5478/000/00

the word TEST that is in t'ae lexicon. If necessary, JOE is
recoopiled.

HAPY TEST:2:
The rule-applyinq subr BART is operated aqainst the second
torm of the word TEST fron the lexicon. If necessary, MARY
is automatically reccnpiled.

RON ABC LEX;
The rule-applyinq subr ABC is operated aqainst each form of
each word in the entire lexicon.

RUN JOE LEX FOu;
The rule-applyinq subr JOE is run aqainst all forms in the
sub-lexicon FOO. This command is exactly equivalent to

JOE LtX FOO;

8. OUTPUT COHflANDS

Three commands are available for the output of defined
obiects and the output of the results of some run commands.
Output ma/ be to the use^s terminal, printer, or disk. The
<outpiit> commands beqin with the name of the device:
TERBIKAL, PRINTER, or DISK. If DISK is used, then a file
name is also qiven.3 The output options, separated by
commas, follow the device (and file) specification. The
possible output options and their meaninqs are:

SUBRS - output the current definition of all rule
applyinq subrs as subr commands.

RULES - output the current definition of all rules as $
commands.

3LEXS - output the current definition of all
sub-lexicons as slex commands.

LEX - output the current definition ot each lexicon
entry (all forms) as lex commands.

ALL - equivalent to the output option .sequence LEX,
SLEXS, RUIES,SUERS.

3 The Knowledqeable LISP user may instead specify a file
descriptor list. A file name alone, say PN, is equivalent
to the file descriptor list (FN INFIX AW). In any event,
if the selected disk output file already exists, it is
erased before the command is executed.

._

mmtmmm™ nuw i i "' <-'»l ■ ''• i-i^wwi^wwpii-»«»»«««. ummmmmmrmmmmemimi^mmmm^ 11n u i m iimmmmmmnmU'r

»V ■

24 January 1975
-26-

System Oevelopient Corporation
TH-5478/000/00

SOBR s - output the current definition of the rule
applying subr s as a subr coanand.

RULE r - output the current definition of rule r as a $
command.

SLEX 1 - output the current definition of sub-lexicon 1
as an slex command.

RUN s 1 - (where s is a rule-applyinq subr name
iiicludinq JOE and HARY, and 1 is a sub-lexicon name or
the word 1EX) applies s to all forms specified by 1;
each original and all derived forms are output.

All outout options except run print in a foraat that is
proper for recompilation. Thus, the command,

DISK XYZ ALL;

would output, all current definitions to the file XYZ in a
recompilablt? format. To compile the contents of a disk
file, use i dcomp command such as

DCOMP XYZ;

The combination of a disk and dcrmp command may be used to
obviate the necessity of saving the entire system module to
preserve work in progress.

Other examples of output commands are

TERMINAL SUBR FOO, RULE FLAP;
PRINTER RUN FOO SLl;

The first command outputs the definition of the
tule-applying subr FOO and the rule FLAP to the user's
terminal. The second command outputs the results of
operating the rule-applying subr FOO against each form in
the sub-lexicon SLl to the high speed printer.

For some uses, the guery command is more economical — see
Section 6.

9. p.ELETE_CP'1MANp

A delete coamand may be used to remove from the system a
rule-applying subr, a rule, a sub-lexicon, or a lexicon
entry. The forms of the command are described by examples.

— ■

P|H^«««W»«r*r«"IPi»P»^i^^P^""i«BP"»lWP ii ii • ■iHi^iwiiiNMww«p^pOT^npwimMM«nMii**««PMi|^p«iv mm*

24 January 1975 Systen Development Corporation
-27- TN-5a78/000/00

DEL SUBR XYZ;
The rule applying subr XYZ is removed from the system.
associated syitbclic data and code are erased.

All

DEI. RULE ABC;
The rule AbC is removed from the system. All associated
symbolic data and code are erased. Rule-applyinq subrs that
reference this rule should be edited and recompiled.

DEL SLEX CBS;
The definition
system.

of the sub-lexicon OHS is removed from the

DEL TOTAL:
The lexicon entry TOTAL and all of its forms are deleted
from the lexicon. Sub-lexicons that reference this word or
any of its forms should be edited and recompiled.

10. THE_EDITOR_AJip_THE_HEC0MPILE_C0HMAK0

This section lescribes a mini-editor that may be used for
oorrectinq input and a command for entering edit mode with
current definitions.

10. 1 THE EDITOR

The editor is automatically entered when a sy
detected or when certain other error condition
input to the LISP INFIX compiler (and hence co
rule system) are viewed as token s'rinqs.
tokens are identifiers, unsigned numbers, a
characters such as colon, plus (♦), and equal
compilation, tokens are input and added to a
input list". When an error is detected, t
available for editing. If input is from a
part of the input line past the point at which
detected is lost. If input is from any other
current character and token positions are mai
point at which further input may be found after

ntax error is
s occur. The
mmands to the
Examples of

nd delimiter
(=) . During
"last tokens

his list is
terminal, the
the error is
device, the

ntained as a
editinq.

Upon entry t
output alonq
input list,
prob 1Hui is r,o
for an ident
maintained —
and next. At
the front of
input source
completed in

o the editor, an optional error messaqe is
with the last several tokens on the last tokens
If no specific error messaqe is issued, the

me qeneral syntax malady, such as using a comma
ifier. Durinq editinq, two token lists are
last (initially the last tokens input list)

the completion of editinq, last is appended to
next. The combined list is then used as the
for the compilation. If the command is not

this list, more tokens are input from the file

MMMiat •»__

""-- '■"' ~ •mmf^rmm^mni^ir^Fmmrt^^^r
'■-' ' 'm i'wmtm^mmmmmfm^^. ' *mmmm*m

24 January 1975
-28-

Systea Developaent Corporation
TN-5a78/000/00

•

that was in use when the error occurred. If a further error
occurs, the editor is re-entered. If the error occurs while
using the list, tlen the tokens up to and including the
error are on the last tokens input list (last) and the
reaaining tokens are on next. Parts of both last and next
are output upon editor entry if they are aot empty.

Several coaaands are available in the editor to aanipulate
last and next: tlL, NN# PL, PN, DL, ON, M. and AN. The
commands T and E are also available to continue or abort the
coapilation. Multiple coaaands aay appear on one line, and
i single coraand aay stretch over multiple lines. The
following paragraphs describe the coaaands.

10.1.1 Si-and-hlLCaiB^ILds

ill. is followed by a positive integer. The specified number
of tokens are aoved froa next to last. HN is u.sed in a like
manner to transfer tokens froa last to next. Given the
following initial values of last and next:

last = SUBR F00 ALLOF)
next = A , D) , C ;

the coipmand ML 2 would produce

last ■ SUBR F00 ALLOF) A ,
next = B) , C ;

and the coaaand IN 2 would produce

last ■ SUBB FOO
next = ALLOF) A , B) , C ;

10. 1.2 PL and. PN XPJüMüds

PL and PN are followed by a positive integer. The specified
number of tokens on last or next, respectively, are printed.
Given the initial configuration

last = f FLAP DX = VOUBL / T
next = OR D / VOWEL ;

the coaaand PL 3 would output

VOWEL / I

and the command PN 3 would output

OB D /

MMM ^■■Mh^B. **~.

•mlf^ i ■■•■■■ n |Wa

24 January 1975
-29-

Systea Deyelopaent Corporation
TH-5a78/000/00

10.1.3 PL-and DH Coaaan^s

DL and DN j'.L-e followed by a positive integer. They delete
tho specified number of tokens fro« last and next
respectively. Given the initial values of last and next: '

last = SLEX SL1 TOTAL
next = , , COULD ;

the cooaand DL 2 would produce

last = SLEX
next = , , COULD ;

and the coaaand DN 2 would produce

last = SLEX SL1 T0IÄL
next = COULD i

10.1.4 ^h. aM. AN Coaaands

AL and AN are followed by an input sequence. Thfv add the
input sequence to last and next, respectively. The input
sequence is deliaited (on both ends) by any token that loes
not appear in the sequence. Given the initial values of
last and next

last = SLEX S2 TOTAL ,
next = COULD , ANY ;

thn command AL / PRODUCT, / would produce

last = SLEX S2 TOTAL , PRODUCT ,
next = COULD , ANY ;

and the comaand AN / PRODUCT, / would produce

last = SLEX S2 TOTAL ,
nnxt = PRODUCT , COULD , ANY ;

10.1.5 r Command

Th« 1 command siqnals that editinq should be terminated and
that compilmq should commence. The compiler restarts with
the tokena in last and next and then returns to the input
file for any additional proqram text. If input is from th*.
user's terminal, additional text may be input on the same
line as the T command (or on followinq lines). If input is
from a device other than the terminal, then readinq resumes,
after exhaustion of last and next, -just beyond the point at

 - ' •— ---- ^__ ̂ . .

■ "- •' m^ '^^^mf^^m •"• ■" uuM^niin JU ^^■»WHP^WWPIiBp^Fl

24 January 1975 Systei Oevelopaent Corporation
-30- TN-5U78/000/00

which the error was detected. For exaiple, suppose
foliowinq line were inpu'. froa the terainal:

that the

StlBR F00 ONEF) A,Pi »C;

The editor would respond with the error aessaqe '•HISSING (,,.
The value of last would be SUBR F00 ONBOF), and next would
be eapty. The reaainder of the input line (because it caae
froa a tcrainal) would be discarded. The reaedy would be
the sequence of coaaands:

DL 1 T (A,p; fC;

DL 1 would delete the erroneous ")H# and the T coamand would
initiate the re-coapilation. The total token sequence input
to the compiler would then be

SUBR F00 ONEOF (A , B) , C ;

10. 1.6 E ccmaand

An E command exits (aborts) coapilation of the current
input. This conmand is recoqnized only by the editor. If
input is from the terminal, the the command supervisor will
be left in a position to accept the next command. If input
is froip some other device, the rest of the input file is
skipped.

10.1.7 Genera1_Comments About gditing

KL, HN, PL, PK, DL, and DN commands receive a token count
(an inteqer) as an arqument. If the count exceeds the
number ot tokens in the list (last or next) specified by the
command, then the whole list is moved, printed, or deleted,
as is appropriate. An input to the systea may be broken
with a % preceded by a space. If you are in the elitor, you
will stay there. If not, you will be put into the editor
with the messaqe, "ESCÄPEW.

10.2 THE PECCHPI1E COMMAND

A recompile command is used to
definition of a rule-applyinq
sub-lexicon. Assume that S is a
name, and SL is a sub-lexicon name.
commaud are:

edit and recompile the
subr, a rule, or a
subr name« R is a rule
Then three forms of the

mmam «Ml

■■"— Ml* '•"■■'I ■PTJ

2» January 1975 Systei Detelopaent Corporation
-31- 18-5178/000/00

RECCMP SUEF S;
RECOHP RULE B;
RECOHP SLEX SL;

Hhen definitions are input to the systea, the syabolic token
strinq is kept "two deep»1. That is, the latest and next to
latest definitions are «aintained. The above conmands work
on the latest definitions. To work on the older
definitions, use coaaands of the fora:

RECOUP 01D SÜBR S;
RECONP OLD RULE R;
RECOHF OLD SLEX SL;

The recoap coaaand causes the specified definition, as a
token strinq, to becoae the value of the editor^ list,
next. Last is eaptied, and the editor is entered. You nay
then aake any appropriate chanqes and qive a T coaaand to
recoapile the definition with the aodification(s) . For
exaaple, suppose the followinq definition is aade and used:

SUBR FOO ALLOF{4,B) ,ONEOF (C,D) ;

The command

RECOUP SUSP FOO;

is qiven. Then the followinq edit coaaands are issued:

ML 2 DL 1 AL / ONEOF / T

The new defirition of FOO is

SUBR POO CNEOF{A, B), CNEOP(C, D);

and the oriqinal definition is the one jseable by the word
OLD. To restore the old definition and make the current
definition the eld one, use the coaaand

RECOUP OLD SUBR FOO;

Simply qive the editor the T command, and the rucompilation
and swan will occur.

When def initiens are output (by an output command) , only the
current (or latest) definition is printed. The delete
command deletes both the current and the old definitions.
Whon definitions are made for which no current definitions
exist, the present input becomes both the current and the
old definition. If an uncorrected error occurs in a
definition (qivinq the editor the F coaaand) no chanqes or
additions occur in the saved copies.

mmm ■ - - ammtm

'—^ " H" ■ " ■ 1 I I II1HI...I..I. I,UI1 •' mv umiMimw^mimmm*^^*

24 January 1975 Syste« Derelopaent Corporation
-32- TH-5478/000/00

11. SISTE(l_iSP5CTS

This section describes soae liscellaneous features and
capabilities of the phonological rule testing systea as
opposed tf. the ccaaand language. Even though aany of the
discussed i.ens are of interest only to one using the systen
as a function library, others using the systea can benefit
froa a guick reading of this section.

The phonological rule testing systea is eabedded in SDC
LISP. The conmands are iapleaented as an extension of the
TISP INFIX language. It is possible to intersperse rule
systea coraaands with input to the LISP coapiler and
^valuator. Therefore, soae coaaandä that contain syntax
errors may be interpreted as LISP. When this happens, the
trsultinq error aessages and/or evaluations are based upon
the standard LISP rules.

The following subsections describe interaction with the
operating systea, coapiler switches, functions that process
ARPAbet, and the subr execution support routines.

11. 1 INTERACTION WITH THE OPERATING SYSTEM

SDC LISP and hence the phonological rule testing system
operate under the vn/370 aonitor using CMS — see [3 1.
Terainal connection is aade to the systea via either ä
telephone or the ARPA network — see \ H], The following
descnhes the procedures using a telephone connection,
action 11.1.7 describes the differences using the network.

11.1.1

After you
tne herald
login, hit
"I". Then

l2gaifla_in_ani_J<ojding

dial Vfl on a telephone line, the systea outputs
"711/370 ONLINE" and enters an idle state. To
the carriage return and wait for the output of

type a login coaaand.

L user pass

I'ser is the user's account naae and pass is a password
associated with that account. (The login and all other
comaands and input lines are terainated by a carriage
return.) The systea responds to the login with the output of
a variety of qreetirg and inforaative aessages. You are now
logged into the systea and aay issue coaaands to the
aonitor.

At this point, you will wish to load and use the
rule-testing systea. This is possible only if the RULELIB

■ mmmtm

— ' wmfmrmwi r**m*immmff™^^^*im*w ■«HP».«!' turn» P»^PWK*BS»P»W^ipw^

f

2^ January 1975 System Developaent Corporation
-33- TH-5478/00Ü/00

191 disk is attached to your loqin. If it is not, then
enter the coanand sequence»

LINK RriLELIB 191 198 RR
ACC 198 B

To load the systea, input the coaaand

TESTROLE

The systea is loaded, and LISP outputs its set of greetinq
aessaqes. A state has been reached Mhere you nay now enter
rule lanquaqe coaaands and LISP expressions.

1 1.1.2 I j ne_Idi l ing_Characters

The operatinq systea provides a
capa1 iiity. The input of certain
composition of the line. The
characters and their aeaninqs are:
previous character froa the input
character and all previous characters

ainiaal
characters
default
d (delete
line) ; f

from the
» (loqical end of line — used to input two oc
lines on the saae physical line); and " (ace
character as is — do not interpret it as a
character).

line editing
affects th«

line editing
this and the
(delete this
input line) ;
more logical

ept the next
line editing

As luck would have it, each of the chosen four line editing
characters has a usage in the rule testing language or INFIX
LISP. Therefore, it is strongly recommended that some such
comaand as

TERM CH f LINED _ LINEN OFF ES OFF

be entered to the monitor (not to LISP — perhaps before you
load the rule-testing system). The result of the above TERM
command is to make " f" the character delete instead of "d,,,
•• •' the line delete insteaa of Mr "r and to turn the loqical
line end and escape character facilities off.

i

11. 1.3 P r om j).t.s_ a n d_ S re a k s

VH/370 handles all terminal traffic (network or telephone)
in half-duplex mode. Therefore, input should not be entered
unless it is expected by the monitor. When input is
expected, a prompt character is output. The default prompt
is a bell. If desired, the prompt may be changed by giving
the monitor (not LISP) the coaaand

TERM BEAD c

..__ ZZ

■■I" ' - ■"■■"—'■I

24 January 1975 Syste« Development Corporation
-34- TH-5478/000/00

where c is a noo-nuBeric character. After this coiianJ, c
will be output instead of a bell uhenevec input is expected.

If there is input when not expected, or the break key
(attention button on 2741 teninals) is depressed at any
tiie, then the aonitor is entered. AT this point, "!" is
output and one of four actions nay be taken: (1) input a
carriage return (program execution will resume) ; (2) enter
HT (teminal output «ill cease until the next terninal input
reguest is issued); (3) enter RT (cancels the last HT
coaaand and resumes terminal output); and (4) enter HX
(execution of the currently loaded proqraa is permanently
discontinued after output of any stacked terminal lines).
If instead of one break, two are input in reasonably rapid
succession, then CP is output and you are in a position to
interact with the CP monitor component. To resume execution
of the loaded program, input "BEGIN".

11. 1.4 lonitor Commands fyoj LISP

Terminal lines input to LISP that begin with "/" have a
special interpretation. If the first two characters are
"//"» then the CHS subset mode is entered. Any CP
subset commands may be input and executed,
control to LISP, input the command "BETüRN".

To
or CMS
return

If the first character of an input terminal line is "/" and
the second character is not, the the entire line except for
the first character is passed through to CP for execution.
For instance, to send a message to the terminal ot the user
with account name JOHN, input

/M JOHN message text

to LISP. If you are talking directly to the monitor, the
command is entered without the 'V". Note, the above usaqe
of "/" to communicate with the monitor can conflict with the
delimitation of the nucleus portion of a rule definition.
For the latter use, make sure it is not the first character
input on a terminal line — if necessary, type a blank
first.

11.1.5 llsp_Return and fogging Out

To return from LISP (and the rule testing system), enter the
command

ROMS;

This returns you to the state that you were in hefore

■■ - ■ -

■■• ■—^ m*

2U January 1975
-35-

Systea De?elopmenu Corporation
T 8-51*79/000/00

loadinq the systea
TH/370 entirely is

The aonitor coiaand to log out of

LOG

Before returning to the systea, it may be desired to save
the current work. This can aost easily be accoaplished
using the output coaaands — see section 8. Another method
is available that saves the entire aodule, currently in
operation, on disk. Assume that it is desired save the
aodule as BYTESTEF;* then input the coaaand

SAVE ("HYTESTER);

The aodule is written to disk and aay later be reloaded by
the aonitor coaaand

lYTESTER

Any identifier of eight ot fewer characters that doe«; not
contain any special characters may be used as the module
save name instead of «TTESTER. The save command is an
exaaple of an ordinary LISP expression that is not part of
the rule testing language. The quote mark used in the save
comaand mforas LISP that the name is an identifier datum
and not a variable name.

A aodule save takes more than 300,000 bytes of
Therefore, it should not be used promiscuously.

disk.

11.1 .b E r ro£ s_a nd_ larflinjg s

Besides syntax errors, other anomalies may be detected by
the coapiler and run tine support package. if A
rule-applying subr definition that contains referencrs to
undefined or deleted rules is compiled, a warning aiaqnostic
is issued — the subr is still compiled. If a subr
containing such a reference is executed, an error message is
output and an error state is entered.

Entry to an error state (usually following an execution time
infraction) is announced by the output of a message that
characterizes the offense and the guestion

PRINT UNWRAP Y/N/D?

♦ GENHOD is used and will save the file as (HYTESTER HODULE

mmm. ..__ -'■- ...—..

1 ■ "■■ ■ ' ^^ ^^^MNMMpamrr

24 January 1975 Systea Development Corporation
-36- Tn-5a78/000/00

As a naive LISP user, lust enter
return to coiaand input.9

N or NO and control will

11.1.7 MetwgrK Dsage

The TBH 370 «odel 145 at Systea Development Corporation is
connected to the ABPA netvork as Host A and is known as
SDC-LAB. Connection froa a Terainal Interface Processor
(TIP) necessitates usage of the two coaaands

r^T 0 L

If the coi.nection is succesfully opened, t-he herald "Vn/370
tNLIKE" is output along with a proapt. (The default crompt
char.sctrtr for network users is a dot.) A loqin cooimand
should now be given. To send a break through a TIP, use the
conaand

-JtS 3

The treak is not acted upon until any stacked terminal linos
have been printed -- therfore, be patient. As «ay be seen
from the above TIP coaaands, ":J,, has special significance.
In order to send "l" through, it is necessary to type mSim,
An alternate method is to define another character as "d" to
VM. For instance, the coaaand

SET INPUT 1 7C

causes the input of "1" to be translated to the EBCDIC
character code 7C, which is the internal representation of
"a". Output is not affected.

The normal logout comaand "LOG" autoaatically clores the
network connection. If you drop the connection by any other
method, the jot is put in a disconnected state and after a
respectable length of t.iae is forced off the machine. It is
urged that whenever possible, the ••LOG" command be used so
as to not tie up resources.

For network connection procedures from other than a
consult the TELNET docn^sntation for your local host.

TIP,

5 A Y or YES response outputs a stack backtrace before
returning to ccaaand state. A D response enters a special
debug supervisor that evaluates LISP S-expressions. To exit
debug state, use the word EXIT.

upipvaiiM^mnvn jiai i .. in ■UIVPI «■»■ iwi 1 m ■Wiii^lB^^wp«B»WPPI

2U January ^975 Systea Development Corporation
-37- Ttl-5478/000/00

11.2 COHPILEB FLAGS

Three flaqs (LISP variables) are available to control to
soie extent the aaount of editinq text saved and the amount
of conpiler output. The flaq FrLG:65 deteraines whether
syibolic definitions of rules are saved for use by later
recoipile and output coniiands. Initially, the flag is on.
To turn it off, enter

RFLG:65=NIL;

The flaq SFLG:65 determines whether synbolic definitions of
rule-applyinq subrs are saved for later recompile and output
commands. Initially, the flaq is on. To turn it off, enter

SFLG:65=NIL:

The flaqs may be turned back on by the commands

RFLG:65=T:
SFLG:65=T:

The flaq TFLG:b5 determines whether the compiler prints
results of the compilation of rules and rule-applying subrs.
Initially, the flaq is off. To turn it on, enter

TFLG:65=T:

To turn it off aqain, enter

TFLG:6S=NIL;

If the flaq is on, then the oriqinal input and the
transformations produced by each pass of the compiler are
outout.

11.3 ARPABE1 SPELLING PACKAGE

Internally, AbPAbet spellinqs are maintained as integer
arrays with each phcne represented by a four byte (32-bit)
inteqer. The information in each byte is

byte 0 - kind vcicinq, and stress level
byte 1 - consonant class
byte 2 - consonant place of articulation
byte 3 - 6-bit representation of phone's name

The redundancy ir the representation is used for a speed
advantaqe by the rules.

A spellinq is built usinq the functions CHE^KSPELL and

- _ **m.

24 January 1975
-38-

Syst«»« Developaent Corporation
TH-5478/000/00

FIAKESPELL. CHECR5PEIL has one arquaent, a list of phone
nates, ":'*, and integers. If the list is legal — e.q., all
list itens are phone naa3S#

N:N only follows full vowel
naaes, integers only follow *tnt and all integers ^-e 0, 1,
or 2 -- then CHECKSPBLL returns the list in a ••normal" form
with exterior word boundaries appended. If the list is not
legal, error messages are output, and NIL is returned. Tho>
function MAKESPELL takes as an argument a normal form value
of CHECKSPELL and converts the representation to an integer
arra v.

The spelliiiTS of forms associated with a word may be
retrieved using the macro SPELL. For example,

3PEIL ("TOTAL)

returns a list of the forms of the word TOTAL. Each form is
an inteqer array. Given an integer array spelling, the
(identifier) name of the Ith phone is retrieved by

r.ETI,AKE(s,I)

where s is the array. Assuminq that the Ith phone is a
vowel, its stress level (an integer) is retrieved by

G£TSTRESS(S,I)

The mac
the st
argumen
phone•s
iiame —
that ph
feature
levels,
is a
informa
and {?
releven

ros NCCDE, PCODE, and
ructure of an intege
t to NCODE is a pho
8-bit name code. Th

the value is the 32
one (sans stress level

name (STRESSO, STB
and STRESS for the en

list of two integer
tion for that feature
) a bit-mask that, ma
t teature information

FCODE are available to examine
r phone representation. The
ne name -- the value is the
e arqument to PCODE is a phone
-bit inteqer representation of
). The arqument to FCODE is a
ESS1, and STRESS2 for stress
tire STRESS field) — the value
s: (1) the byte in which
is maintained (0, 1, 2, or 3),
y be used for extractinq all
from the selected byte.

The array C2PHAPY has 256 elements, each element
correspo-idinq to an 8-bit phone code. If p is the name of a
phone, then tht expression

C2PHARYrPC0DE("p) ♦11 EQ "p

is always true.

The function PRNSPL has one arqument, an inteqer spellinq
array. Tt prints the spellinq in a compressed form; i.e.,
no blankr. or ":•• are output. It also prints (on the same
line if possible) the elements in the list ROLES. The value

.MM - "-'- - - -

24 January 1975
-39-

Systen Developnent Corporation
TM-5478/000/00

of ROLES usually is the set of rules that have perforaed
^üS«0,:B^t^0ns to Produce this spellinq. Another function,
PRNHAP, behaves siailarly to PRNSPL, PRNflAP has no
arqutnents. The array printed is the value of the
SPELLARY and the nuaber of phones output
value of the variable SPELLEN.

variable
is equal to the

Caution ohould
and aacros.
[Disused, lead
protected thro
CHECKSPELL, HA
PCODE, and FCOD
and PRNSPL and
it is necessar
See the next
SPELLARY, SPELL

be exercised when usinq the above functions
hey do little error checkinq and can, if
to unrecoverable errors. All are name

uqh the section mechanism. The names
KESPELL, SPELL, GETNAME, GETSTRESS, NCODE,
E are in section 1; C2PHARY is in section 65;
PRNHAP are in section 66. Thus, for example,
y to enter NCODE: 1 rather than just NCODE.
section for full names of the variables

EN, and RULES.

11.4 EXECUTION SUPPORT PACKAGE

This section briefly describes the necessary protocol to use
rules and rule-applyinq subrs other than throuqh
rule-testinq commands. The oriqinal intended usaqe of the
system was in this mode as a dynamic component of a speech
understandinq system — see [21 and [5].

The LISP sectioninq mechanism has been used to minimize name
conflicts of system components and to aid proqram
orqamzation. The sections used by the phonoloqical rules
system are:

1
65
86
67
68
69
113

qeneral utility functions
rule, subr, and command compiler internal
execution support packaqe
ordered rule subrs
unordered and nondeterministic rule subrs
rule functions
compiler command handlers

Section 1 is used by other components of the spoech
understandinq system, and section 113 is used by most
lanquaqe extention facilities in LISP. Unless specifically
stated to the contrary, all support functions and variables
discussed below are in section 66.

11.4.1 Internal _irrä.Y_ Haadlin^

When rules are applied, they aay match soae part of the
input string (an inteqer array) and transform it. For
unordered and nondeterainistic rule application, it is

■^^MM

2a January 1975
-40-

System Developaent Corporation
TH-5U78/000/00

imperative
Therefore,
transformed
can cause time
scheme has been

that the original string not be damaged.
new arrays must be allocated to hold the
spellings. Because this happens freguently and

consuming garbage collects, an "erasure"
adopted. To allocate an array, use

LPEATEARYO

The value is an array into which spellings may be copied.
To return the array A to a pool for later use, use

RFASEARY(A)

The pool of available arrays is maintained
ERASEL. The length of arrays allocated by
equal to the value of the variable ARRAYLEN.
value of AFRAYIEN is 50. To change this value

f ERASEL=NIL,ARRAYL£N=xl;

on the list
CREATEARY is

The initial
to x, execute

This bill ensure that the pool of arrays of the old length
is discarded. Note that the size of these arrays should be
a little lonqer than the longest spelling you will ever
d e r i Vfc . 6

Spellirq arrays that hold lexicon forms are of t.ie exact
length of the spelling
final word boundaries),
copy a spelling array
allocated by CBEATEARY.
is NIL, then a copy
teturued. Otherwise, an
is copied into it. The initial value of

{in phones, including initial and
The function COPA nay be used to

of an exact length to an array
If the value of the variable CFLG

is not made and the argument is
array is created and the arqument

CFLG is T.

Because the system normally operates wi
lonqer than the actual spelimqs, it
communicate the actual lengths. As rule
subrs are operated, they attempt to mak
variable SPELTEN the actual number of ph
of the variable SPEILABY the array conta
The variable SPELLINX normally is the
that starts the current1y visible input
variable NEXTARY is an array in which a r
reconstruction dictated by its left side.

th arrays
is

s and
e the
ones
ining
index
substring,
ule may pe

nece
rule
valu
and
the
of

that are
ssary to
-applying
e of the
the value
spelling,
the phone

and the
rform the

* Be qenerous — the penalty for exceeding this bound may be
an unrecoverable program check.

i inr—mmm ■ - -

2a January 1975 System Development Corporation
-41- TH-5a78/000/00

11.U.2 Rule Calling Sequence

A rule is compiled as a function with the
section 69 as the function name. Hhen a rule
is expected that the phonetic input strinq be
that is the value of the variable SPELLARY
value of the variable SPELLINX te the index
that starts the currently visible substrinq.
does not match the substrinq, then NIL i.~ returned as the
value. If the rule matches, then several conditions prevail

the value of the

rule name in
is called, it
in the array

and that the
of the phone
If the rule

(a small inteqer) of
by the rule's left
rule is in reqister
EMRK are set to the

when the rule function returns: (1)
function (in reqister AC) is the lenqth
the reconstruction sequence qenerated
side, (2) the identifier name of the
ACO, (3) the system entries BMRK and
absolute locations of the beqinninq and just beyond the end
of the part of SPELLARY matched by the rulers nucleus, and
(U) the system entry CHAHGES contains the reconstruction
sequence qenerated by the rule's left side. If the rule
function returns non-NIL, then the derived spellinq is
qenerated by calling the proper reconstruction function.
The reconstructor used depends upon whether the rule
application is ordered, unordered, or nondeterministic. For
ordered rule application, use a code sequence like

(AHGS) (CALL rule) (BZM AC (LABEL L)) (ARGS) (CALL RECO)L

for unordered rule application,

(ARG5) (CALL rule) (BZH AC (LABEL L)) (ARGS) (CALL RECU) L

and for nondeterministic rule application,

(ARGS) (CALL rule) (BZM AC (LABEL L)) (ARGS) (CALL RECN)L

where rule is the rule name in section 69 — for instance
(FLAP . 69). The reconstruction functions RECO, RECU, and

RECN each behave a little differently to be compatible with
the different kinds of rule applying subrs. Each is
described below.

11.U.3 Ordered Subrs

An ordered rule-arplyinq subr is compiled as a two-arqument
function. The name of the function is the subr name in
section 67. The arquments are the input spellinq and the
lenqth of the spellinq. The input spellinq is copied by
COPA (if the value of CPLG is non NIL). The value of the
variable SPELLARY is set to the input spellinq, and the
value of the variable SPELLEN is set to the spelling's
length. Then the subr parts are executed, left to right

II

24 January 1975 S>ste» Development Cocporatior «
-42- TH-5U78/000/00

across the input, one at a tine. If a rule in a subr part
matches the input substring, then RBCO is called
immediately. RECO performs several functions: (1) sets the
value of the variable HULEHAFIE to the nane of the rule
matched, (2) makes the changes in SPELLART, (3) sets SPELLEN
to the new spelling length (4) adds the name of the rule
(value of HÜLENAME) to the list RULES, and (5) calls the
value of the functional variable MAPPER. In rule testing
mode, the value ot MAPPER is the function PRNHAP. The
variable SPELLINX is the index of the substring matched by
the rule. Its value is available when the value of MAPPER
is call ..

Several points should be noted when any program other than
the rule testing system is directly calling an ordered
rule-applyinq subr: (1) it is the caller's duty to bind or
sat CFLG to the proper value, (2) ROLES should be re-bound
so that it will reflect only the rules that have operated on
this spelling, and (3) if desired and appropriate, call
EflASEAR* with the value of SPELLARY at the completion of
execution.

11.4.4 Onoidered Subrs

An unordered rule-applying subr is compiled as a
three-argument function. The function name is the subr name
in section 68. The arguments are the spelling array (input
string), the number one, and the spelling's length. (The
second argument is actually used as i^e substring start
location. However, unordered subrs are called recursively
and must be initially "primed" with a one.) Unordered subrs
re-bind numerous global variables: SPELLARY, SPELLINX,
SPELLEN, NEXTARY, RULES, SPELLFN, and RULENAMB. When the
subr is entered, it immediately calls the value of the
functional variable MAPPER (set to PRNMAP in rule testing
mode). The values of SPELLARY, SPELLINX, SPELLEN, and RULES
Atv proper and reflect facts about the spelling in SPELLARY.
The functional variable SPELLFN is bound to the subr itself
so that RECU can make proper recursive calls. The value of
NEXTARY is initialized to an array (by CREATEARY) on each
subr entry, and is released (by EHASEARY) on subr exit. The
array is used by RECU.

RECU is the reconstruction function used ty unordered
rule-applvinq subrs. The name of the rule that -just matched
is stuffed into the variable RULENAME. Then the new
i-pelling is constructed in NEXTARY without aodifyinq the
vaiuo of SPELI.ÄRY. Next, the value of SPELLFN (the subr) is
called recursively with the three arguments NEXTARY,
.^PELIINy:, and the length of the new spelling that is in
NEXIAHY.

■»»«"—*—'—^'^-^»*»-^—"--—^—-■--—

24 January 1975 System Development Corporation
-•3- T11-5478/000/00

When an unordeir^ rule is called, it is not necessary to
copy a spellinq of exact length into a longer array — the
original spelling array is not altered. Before the subr is
called, the value of ROLENAHE should be bound to some
meaningful value, say the «ord «hose spelling is being
operated upon. The reason is that t.ho value of RULENAME is
added to HOLES by the initial subr coll is if it were a rule
name.

11.4.5 Nondetegm^ni^tic jubrs

A nondeterministic rule-applying subr is compiled as a
three-argument function. The function name is the subr name
in section 68. The first argument is the input string (as
an integer array), and the third argument is the length of
the input string. The second argument is irrelevant. (This
makes calling seguences reasonably compatible with unordered
rule-applying subr functions.) The subr binds several
special variables: SPELLABY, SPELLTNX, SPEL.EN, NEXTARY,
TRYSET, and DONESET. The value of SPELLINX cannot be relied
upon in nondeterministic subrs. The walue of NEXTARY is
initialized to an array by CREATEARY. All arrays created '.n
a nondeterministic subr are erased (by FRASEARY) be^cre
exit. Each tine a rule matches the input substring, RFCN is
called. The functions performed by RECN are: (1) stuff the
value of RULENAME with the name of the rule that matched,
(2) put the derived spelling in NEXTARY, (3) add to TRYSET7

a list of the length of the derived spelling, NEXTARY, and
the name of the rules that have participated in deriving
this spellinq, and (U) set the value of NEXTARY to another
array (using CREATEARY) .

Eventually,
input array)
the array is
rules that ha
value of ehe
rule testing
PRNMAP. As
should be bou
called. The
if it were a

each array on TRYSET (includi
becomes the value of SPELLARY

set in SPELLEN, and RULES is se
V3 participated in deriving thi
functional variable MAPPER is

mode, the value of MAPPER
with unordered subrs, the va
nd to some meaningful value be
initial value of RULENAME is a
rule name.

ng the original
, the length of
t to the list of
s spelling. The
then called. In
is the function
lue of RULENAME
fore the subr is
dded to RULES as

7 Step three is bypassed if
been generated.

the same spelling has already

■ — ■ .

^——^^^—

2U January 1975 Syötea Developaeot Corporation
-4U- TH-5a78/000/00

BIBLIOGRAPHY

fll - "INFIX LISP FOB SDC IBH 370 USERS", J.A. Barnett,
TH-4310/600/00. 5/24/73.

f21 - MA PHONOLOGICAL HOLES COHPILEB", J.A. Barnett,
Proceedinqs of the IEEE Syaposium on Speech Recognition,
U/74, pp. 188-192.

f 31 - "IBH VIRTUAL MACHINE FACILITY/370: COMMAND LANGUAGE
GUIDE FOR GBNEFAL USERS", Order Nuiter GC20-180U-n.

fa! - "CURRENT NETWORK PROTOCOLS", Includes BBN Report 1822.

fSl - "A VOICE-CONTROLLED DATA HANAGEHENT SYSTEJ1", H.B.
Ritea, Proceedings of the IEEE Syaposiua on Speech
Recognition, 1/74, pp. 28-31.

mmrnm _—-__._

 wfrwm^

21* January 1975 Systei Developaent Corporation
-«♦5- Tfl-5478/000/00

APPENDIX 1: COan&MD SYNTAX

The followinq suanarizeä the syntax of the commands in the
rule system. The description is standard BNF with the usual
augmentation; namely, the use of * means that tht> followiuq
term must occur at least once and may occur multiple times.
A form like tf'x» means that the followinq term must occur at
least once or may occur multiple times separated by x's.
For example, *,-,A means A, Ä-A, A-A-A, etc. Square
brackets, f and 1, mean that the occurrence of the enclosed
term is optional. (and) are used as meta parertheses.
The occurrence of | between terms means alteration i.e., a
choice of the terms.

The syntax of a rule definition is

<rule>::=$ <r-name> <lef t-side>=<riqht-3ide>r <couditional>];

<r-name>::=<identifier>

<lef t-side>:: =NrL | X • , Kief t-part>

<left-part>::=<consonant-name>|<boundary-narae>|
<reduced-name>i<left-vowel>|
<index>|<constructed-consonant>

<lcf t-vowel>:: =<vowel-desiqnator>r <stress-desxqnator>]

Cvowel-desiqnator>: :=<f ull-vowel-nanie>| <index>

<index>::=<inteqer>

<stress-desiqnator>::=<explicit-stress>|<borrow>

<explicit-stress>::= : <£tress>

<str€ss>::=0|1|2|

<borrow>::=a<index>

<constructec?-consonant>: := (<class-desiqnator>
<place-desiqnator>
<voice-desiqnator>)

<class-desiqnator>::=<class-name>|CLASS<borrow>

<place-desiqnator>::=<place-name>|PLACE<borrow>

M^M

' ■ »" "■ ^m^mm-i^^^^mmmmmmmmmmm ""'« -

2«» January 1975 Systei Development Corporation
-46- TH-5U78/000/00

<voice-desiqnator>:: =f - iVOICEf <borroii>l

<riqht-sid€>::~<nucleus>|
F <le£t-context> Vf <nucleus>1/
(■ <riqht-conteit> 1

<nucleus>:: =%• »Kriqht-par^

<riqht-context>::^X1,,<riqht-part>

<left-context>::=%',•<riqht-part>

<riqht-part>: :=<repeat>|<optional> i<cboice>

<repeat>::=REP <Bin-count> <choice>

<iiin-count>:: =<inteqer>

<optional>::=OPT <choice>

<choice>: :=*,0R •<pat-part>

<pat-part>::=<consonant-naBe>|<boundary-name>l <reduced-name>(
<f ull-vowel-naiOf <explici t-stress> 11
<class-naine>|<place-naBe>i <kind-naBe>|
VCICE|VOWLL<explicit-stress>|<feature-bundle>|
♦ < pa t- pa rt > |- < pa t- pa r t>

<feature-bundle>::=(X<choice>)

<conditional>::=IF <cond-body>

<cond-bod v>: ^X'OE' <cond-and>

<cond-önd>: ^X» AND' <relation>

<relation>: : = <lcind-test>|<class-test> |<place-test> |
<stress- test>I <nanie-test>| < voice-test> |
(<cond-body>)

<kind-test>: : = KIND<borrow> (EQINQ)
fKIND<borrow>|<)cind-naBe>|

<class-test>::=CLASS<borco«> (BQ|NQ)
fCLASS<borrov>|<class-naae>)

<place-test>: : = PLACE<borrow> {EQ|NQ}
fPLACE<borrow>J <place-naBe>}

<stress-test>:: =STRESS<borrow> fEQ| »QIGQl LQIRRJ IS}
{STRESS<borro¥> |<stress>;

-—-- mtwy^MMMMMM^MtaMMM!

imwiiiii uwiiiiw«aH««iiiwi»n<i»iiii>i< i immnwmmmi^mm * iinqp^pui

20 January 1975 Systei Developaent Corporation
-*7- TH-5a78/000/00

<na«e-test> : : = llAllE<borrow> {BQ| NQ}
{NÄME<borro«>i<boundary-nane> |<consonant-naniG>|
<r€duced-naie>|<full-vowel-naiiie>}

<voice-test>::=r-lV0ICE<borrow>|
VOICE<borrow> {EQ|NQ) V0ICE<borroM>

<consonant-name>:: = L|W|Y|H|IIXlII|H|G|BID|P|T|K|ZH|Z|DH|V|
SH1S|TH|P| JH|CH|Q|0X|HH|HH

<boundarv-naiBG> ::=♦)#

<reduced-naiie>: :=AX

<full-vo¥el-name>:: = iyiIH|By |EHIAE|AA|AH|AO|OII|UH|0W|
EB1AH|AT|0T

<cldSS-naBe>::=APRIC|FBICS PL0S| NASALIGLIDE)
LATERALICENTBAL

<place-naiBe>::=LAEIAL|ALVEOLAB|ALVPAL|DENTAL|
VELABIPALATAL

<kinc-naiDe>: : = B00HEABY| C0NST| VOHEL

The syntax of a subr definition is

<subr>: := f <u nordered-subr> |<ncndeterministic-subr> |
<ordered-subr>} ;

<unorder«=d-subr>::=SDBB UNOBDEBED <s-naiBe>
%*,'<r-naBe>

<nondeter«inistic-subr>::=SÜBB NODETERM <s-na«e>
*' f

,<r-naae>

<ordered-subr>:: = SUBR fOBDEBEDl <s-na«e> %• ,• <subr-part>

<s-naBe>: :=<identifier>

<subr-part>:r=<r-naie>|<allof>|<oneof>|<if>|<unless>)
(<subr-part>)

<aliof>: :=ALLOF(X,,,<subr-part>)

<oneof>:: ^NEOFC*1, ,<subr-part>)

<if>::=IF <subr-part> THEN <subr-part> [tlLSE <sutr-part>1

<unle.ss>: : = aNLESS <subr-part> THEN <subr-part>

m——mmm^m^mm

P«PW«"n"WFW««iPWPIiWPfcf»l!P»'ii i •~~*w*mm**mmim v^mmmm *m

24 January 1975 System Developient Corporation
-48- TH-5478/000/00

f ELSE <subr-part>l

The syntax of a recoipile coiaand is

<recoBp>: :=RECCnP fCLDl {SUBB <s-naBe> |
ROLE <c-naae>|
SLEX <l-naiie>}

The syntax of a delete coaaand is

<delete>: :=DEL {<word>|
SUEB <s-naiie>|
RULE <r-naBe>|
SLEX <l-naae>} ;

The syntax of a sub lexicon definition coatand is

<sub-lexicon>::=SLEX <l-naine> %•,' f <word>r <f ora~index>]};

<worä>::=<identifier>

<forB-in'lex>: := :<inteqer>

The syntax of a lexicon entry definition coBBand is

<lexicon>::=LEX {<lex-pcint> |<lex-auq> |<lex-def >} ;

<lex-print>:: =<word>r <f orB-index> 1

<lex-auq>:: =<wcrd>*3P ,' <acpa-spell>

<lex-def>::-<word><forB-index><arpa-spell>|
<wo^d>%,,,<arpa-spell>

<arpa-spell>: := (* f<consonant-naBe> |<boundary-naae> |
<reduced-naBe>|
<full-vowel-naBe>r<explicit-stress>l})

- - - _^_„.

I! »Wim".» 1 u. i i i WilUHi^minMPtp Wmi I I11" ■ " . IKWIPPWmPpqBIPPWP ■ i ii mi~*^mm

2H January 1975 System Development Corporation
-U9- TH-5a78/000/00

The syntax of the execute conaands is

<execute>: := f<run>| <1oe>| <Bary>) ;

<run>::=RüN <s-naie> <run-obiect>

<1oe>::=J0E <run-ob1ect>

<aary>: :=MARY <run-ob1ect>

<run-obiect> : :=LEX T <l-naiiie>U <arpa-spell>|
<Hor(l>f <f orB-index> 1

The syntax of the output conoands is

<output>:: = f<teriiinal>| <printer>J <disk>);

<tpriainai>: : = TEEHINAL <out-sequence>

<printer>::=PFINTEE <out-sequence>

<disk>: : = DI3K f<f-naiD€>I <fdl>l <cut-sequence>

<f-naBe>::=<identified>

<out-sequencG>: : =%• #
,<out-£pec>

<out-SDec>: :=ALL|SUBRS|RULES|LEX|SLBXSI SOBR <s-naie>i
FIULE <r-naine> ISLEX <l-naine>|
RUN f<s-naBe>| JORI MARY) {<l-nane>| LEX)

The syntax of the query command is

<querv>: : = ? (R ULES| SUBRS] LEX| SLEXS} ;

1

J

mm* wmm^^i 1 ■ iü l«*ü

24 January 1975 Syste» Development Corporation
-50- 111-5478/000/00

APPENDIX 2: PHONOLOGICAL SYHBOLS AND THEIR FEATURES

PHONE EXAMPLE FEATUPES
IY beat VOWEL, stress, VOICE
IH bi<- VOWEL, stress, VOICE
BY bait VOWEL, stress, VOICE
EH bet VOWEL, stress, VOICE
AE bat VOWEL, stress, VOICE
AA bob VOWEL, stress, VOICE
AH but VOWEL, stress, VOICE
AO bouqht VOWEL, stress, VOICE
OW boat VOWEL, stress, VOICE
OH book VOWEL, stress, VOICE
UW boot VOWEL, stress, VOICE
AX about VOWEL, :0, VOICE
ER bird VOWEL, stress, VOICE
AH down VOWEL, stress, VOICE
AY buy VOWEL, stress, VOICE
OY bpy VOWEL, stress, VOICE

Y you CONST, GLIDE, PÄLATAJ, VOICE
W wit CONST, GLIDE, LABIAL, VOICE
R rent CONST, CENTRAL, AIVECLAS, VOICE
I. let CONST, LATERAL, ALVEOLAR, VOICE
H met CONST, NASAL, LABIAl, VOICE
N net CONST, NASAL, ALVEOLAR, VOICE

NX sing CONST, NASAL, VELAR, VOICE
P pet CONST, PLOS, LABIAL
T ten CONST, PLOS, ALVEOLAR
K kit CONST, PLOS, VELAR
E bet CONST, PLOS, LABIAL, VOICE
D debt CONST, PLOS, ALVEOLAR, VOICii
G get CONST, PLOS, VLLAR, VOICE

HH hat CONST, 1ISC
F fat CONST, FRIC, LABIAL

TH thing CONST, FRIC, DENTAL
3 sat CONST, FRIC, ALVEOLAR

SFI shut CONST, FRIC, ALVPAL
V vat CONST, FRIC, LABIAL, VOICE

DH that CONST, FRIC, DENTAL, VOICE
Z 2CO CONST, FRIC, ALVEOLAR, VOICE

ZH azure CONST, FRIC, ALVPAL, VOICE
CH church CONST, AFRIC, ALVPAL
JH iiulae CONST, AFPIC, ALVPAL, VOICE
JH which CONST, P1ISC, LABIAL
DX batter CONST, MISC, ALVEOLAR, VOICE

0 glottal
stop CONST, MISC, VOICE

* i -.yllable BOUNDARY
t word ÜOUNtÄPY

stress « :0, :1 , or :2

 "'"-- ■ "- ,

